A safety study of administration of parenteral testosterone undecanoate to elderly men over minimally 24 months

A. Haider¹, L. J. G. Gooren², P. Padungtod³ & F. Saad⁴,⁵

¹ Private Urology Praxis, Bremerhaven, Germany; ² Endocrinology, VUMC, Amsterdam, The Netherlands; ³ Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand; ⁴ Bayer Schering Pharma, Scientific Affairs Men’s Healthcare, Berlin, Germany; ⁵ Gulf Medical University School of Medicine, Ajman, UAE

Introduction

The progressive decline of testosterone in ageing men is supported by scientific evidence (Kaufman & Vermeulen, 2005). With age, a significant percentage of men over the age of 60 years have serum testosterone levels below the lower limits of normal for young adult men (ageing, 20–30 years) (Araujo et al., 2004; Liu et al., 2007). Whether older hypogonadal men will benefit from testosterone treatment and what will be the risks associated with such intervention can only be resolved by sufficiently powered studies. In the past decade evidence has been produced of the benefit of androgen treatment on multiple target organs of hypogonadal men, and recent studies show short-term beneficial effects of testosterone in older men that are similar to those in younger men (Swerdloff & Wang, 2003; Bhasin et al., 2005; Page et al., 2005; Allan et al., 2008).

Data on the risks of testosterone administration are needed, particularly on its safety in elderly men (Bhasin et al., 2006; Wang et al., 2009). It is unlikely that rigorous scientific data with regard to safety of testosterone administration to elderly men will become available soon. Such studies would include 5000–7000 men. So, for the time being, smaller scale studies will have to be utilised to garner information on safety.

Main side effects of testosterone administration

polycythaemia

There is curvilinear relationship in men (not receiving testosterone administration) between plasma testosterone...
levels and haemoglobin (Zitzmann et al., 2006). Testosterone exerts its effect on erythropoiesis through a number of mechanisms. Testosterone has an effect on erythropoietin production in the kidney (Cui et al., 2003) but it has also a direct effect on colony formation of progenitor cells of erythrocytes (Kozlov et al., 1979). In a study by Wang et al. (2000) a dose dependent effect of testosterone could be established on haemoglobin and the haematocrit values. This dose dependency was also apparent from another study (Dobs et al., 1999), which compared the effects of transdermal versus intramuscular testosterone; the latter achieved higher plasma levels of testosterone and raised the haematocrit more than transdermal testosterone. In a recent study it could, indeed, be demonstrated that testosterone has a dose-dependent stimulatory effect on haematopoiesis in men. Remarkably, this effect was more pronounced in older men (Coviello et al., 2008). Another study confirmed the relevance of the dose of testosterone and of age as factors in the stimulation of haematopoiesis (Zitzmann & Nieschlag, 2007). In addition, obesity and shorter CAG repeats appeared to be factors.

A higher value of the haematocrit is associated with stroke (Kiyohara et al., 1986; Lee et al., 2001), and coronary heart disease (Brown et al., 2001). However, a relation between increased haematocrit as a result of androgen supplementation as such and an increased risk for stroke or any cardiovascular event in general has not been demonstrated by a large meta-analysis of placebo-controlled trials of testosterone administration to (elderly) men (Calof et al., 2005).

Lower urinary tract symptoms and prostate disease

Several follow-up studies of men receiving testosterone treatment (Morales, 2004; Schultheiss et al., 2004; Calof et al., 2005) have failed to demonstrate an exacerbation of voiding symptoms due to benign prostatic hyperplasia. Complications such as urinary retention in therapy group did not occur at higher rates than in controls receiving placebo. The occurrence of prostate cancer after testosterone administration to (elderly) men has been reported (Ebling et al., 1997; Loughlin & Richie, 1997; Curran & Bihrle, 1999; Rhoden & Morgentaler, 2004; Sengupta et al., 2005). By contrast, a variety of studies using various designs and testosterone formulations over periods between several months and 15 years, in men with a wide range of ages, have not revealed an increased risk of prostate cancer (Tenover, 1992; Chamberlain et al., 1994; Carter et al., 1995; Morgentaler et al., 1996; Giovannucci et al., 1997; Heikkila et al., 1999; Hsing, 2001; Thompson et al., 2003; Andriole et al., 2004a,b; Clark et al., 2004; Marks et al., 2006; Morgentaler, 2007; Yassin & Saad, 2007, 2008; Coward et al., 2008). A meta-analysis found that testosterone treatment in older men compared to placebo was not associated with a significantly higher risk of detection of prostate cancer (Calof et al., 2005), although the frequency of prostate biopsies was much higher in the testosterone-treated group than in the placebo group (Calof et al., 2005).

There is a consensus now that administration of testosterone to elderly men is a responsible practice provided certain guidelines of professional bodies are followed with regard to testosterone administration to elderly men (Bhasin et al., 2006; Wang et al., 2009). In this study, we analysed risks of testosterone administration to a large cohort of mainly elderly men.

Subjects and methods

A cohort of 122 mainly elderly men, aged 59.6 ± 8.0 years (SD) years (range 18–83 years old), with baseline testosterone between 5.8 and 12.1 nmol l\(^{-1}\) (mean ± SD = 9.3 ± 1.7) were studied. The aetiology of their hypogonadism was late onset hypogonadism (Kaufman & Vermeulen, 2005) except for three subjects. They had sought urological consultation for a number of reasons: erectile dysfunction, questions about their testosterone status or a variety of urological complaints. They received treatment with parenteral testosterone undecanoate (TU) (administration at 0 and 6 weeks and thereafter every 12 weeks) whereupon the plasma testosterone returned to the physiological range.

They were followed for at least 24 months after the beginning of the treatment.

All men had given their consent to be included in this study monitoring the safety of testosterone administration to elderly men. The study protocol had been approved by the institute’s ethical review board for studies in humans. At intervals of 3 months, after an overnight fast, blood samples were collected between 8 and 11 a.m. Haemoglobin (Hb) and haematocrit (Hct) were measured using standardised routine laboratory methods. Post-void residual bladder volume (RBV), and prostate volume (PV) were measured using Sonocome SA 8000 SE with three ultrasound probes; for abdominal measurement of residual bladder urine volume a probe with 3–7 MHz and for PV a transrectal probe of 5–12 MHz were used. The International Prostate Symptoms Score (IPSS) was assessed.

All analysis was performed using STATA (Stata Corp, College Station, TX, USA). The significance of mean difference over time was determined using linear mixed model (West et al., 2007). Patients were categorised into two groups based upon their measured values of exceeding the upper limit of reference values: PSA > 4 ng ml\(^{-1}\), haemoglobin > 10.98 mmol l\(^{-1}\), (for conversion to g l\(^{-1}\))
divide by 0.6206) and haematocrit > 52%. According to these criteria, patients were also categorised into four age groups using quartiles. Significant levels of association between PSA, IPSS score, haemoglobin concentration, haematocrit and age group were determined using Fisher’s exact test. Significant level of trend of association was determined by Mantel–Haenszel test (Dowdy et al., 2004).

The cumulative incidence of having a haematocrit or haemoglobin concentration increased beyond the upper limit of reference values was calculated by dividing the number of patients who did not exceed the upper limit at previous time points by the number of patients exceeding the upper limit of reference values (Gerstman, 2003).

Results

Patients were followed for 24 months. Plasma testosterone rose from 9.3 ± 1.7 to 14.9 ± 4.5 nmol l⁻¹ (P < 0.01) at 3 months, then stabilised at 19.2 ± 4.6 nmol l⁻¹ after the first 6 months of the study (P < 0.05). Figure 1 and Table 1 show the average levels of IPSS, PSA, haemoglobin concentration, haematocrit, RBV and PV over the study period. IPSS and RBV decreased significantly over the 24-month study period (Table 1). At the beginning of the study PSA levels were 1.53 ± 1.91 ng ml⁻¹ and at the end of the 24 months 1.59 ± 1.1 ng ml⁻¹ (n.s.). Prostate volume did not change significantly over the study period. The mean haemoglobin concentration and the mean haematocrit increased significantly over the first 15 months of the treatment, then levelled off until the end (Table 1). Table 2 provides the level of significance of changes over an interval of 3 months during the 24-month study period. It provides insight into the time table of changes induced by testosterone treatment over the 24-month study period (Table 3). This patient underwent biopsying of the prostate and there were no signs of malignancy. A total of 16 patients had haemoglobin concentrations exceeding 10.98 mmol l⁻¹ (upper limit of reference values) at least once during the study period. A total of 15 patients had haematocrit levels higher than 52% (upper limit of reference values) at least once during the study period. There was no upward trend in the number of subjects with values above the upper limit of reference values over the 24 months of the study (Table 3).
Table 4 shows the relationship between age and the cumulative incidence of excesses above upper limits of reference values over the 24-month study period. In this study, age appeared not significantly associated with any excesses above the upper limit of reference values. There was no significant trend of increasing or decreasing cumulative incidence associated with ageing. The cumulative incidence or risk of having a haematocrit or haemoglobin concentration increased beyond the upper limit of reference values ranged between 0% and 2.7% and 0.4% and 1.7%, respectively.

Discussion

In a cohort of 122 hypogonadal, mainly elderly men, aged 59.6 ± 8.0 years treated with parenteral TU for at least 24 months, there were no adverse effects on lower urinary tract symptoms. There was a decline in scores of the IPSS. Also the RBV decreased. No case of prostate cancer was observed in this cohort over the study period of 24 months. A span of time of 24–30 months of testosterone treatment obviously does not allow conclusions as to the long-term safety of testosterone administration with regard to prostate cancer. Longer and larger scale studies are required to answer those questions. Over the observation period there was no indication of an increase in PV. PSA levels stabilised at 1.59 ± 1.1 ng ml⁻¹, a value not significantly higher than baseline values. Progressive ageing in itself is associated with an increase in PSA values (Snyder et al., 1999). Further, administration of testosterone to hypogonadal men leads to an increase of PSA levels (Calof et al., 2005).

There was an increase in haemoglobin and haematocrit values which, on an average, were not above the upper limit of normal over the treatment period. Statistical analysis with calculations of mean values and SD masks individual excesses above the upper limit of reference values. To report individual excesses, patients were categorized into two groups based on their measured values of whether or not exceeding the upper limit of reference values. There were indeed small numbers of patients with values of safety parameters exceeding the upper limit of reference values but the number of patients did not rise over the study period and the elevated levels were not
necessarily encountered in the same individuals. No relationship with age could be established, which has been reported for effects of testosterone administration on haemoglobin and haematocrit values (Zitzmann et al., 2006; Coviello et al., 2008). A relationship between testosterone levels following testosterone administration and resulting values of haemoglobin and haematocrit (Dobs et al., 1999; Wang et al., 2000; Zitzmann et al., 2006) has been reported but was not apparent from the results of this study. Also, a relationship with plasma estradiol has been reported (Zitzmann et al., 2006; Coviello et al., 2008). Plasma oestradiol levels were not measured in this study but they usually are related to circulating testosterone (Coviello et al., 2008). The rise of haemoglobin and haematocrit levels above the reference range is clinically relevant. A higher value of the haematocrit is associated with stroke (Kiyohara et al., 1986; Lee et al., 2001), and coronary heart disease (Brown et al., 1999). From this study it appeared that, with a testosterone preparation like parenteral TU generating stable levels of plasma testosterone, haemoglobin and haematocrit levels have reached a plateau after 12–15 months. This might imply that, similar to the follow-up of serum PSA, after a first uneventful year of testosterone administration, levels of haematocrit and haemoglobin should be checked once a year.

The safety of TU with regard to erythropoiesis observed in this study is probably to be ascribed to the fact that achieved values of plasma testosterone were constantly in the reference range.

In summary, testosterone deficiency is a common but not an obligatory condition in elderly men. There are numerous indications that a supplementation therapy has beneficial effects. Our data indicate that the short-term risks for the prostate and erythropoiesis are acceptable, confirming results from earlier studies of TU in elderly men (Yassin & Saad, 2007, 2008). Following the guidelines as specified by a number of professional organisations, testosterone-deficient elderly men can be responsibly treated with testosterone (Bhasin et al., 2006; Wang et al., 2009). Needless to say that studies with much larger numbers of men and for a longer period of time are needed to resolve the question of safety of testosterone administration to elderly men.

References

Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Montori VM (2006) Testosterone therapy...
Safety of testosterone undecanoate

A. Haider et al.

Kozlov VA, Tsyrllova IG, Zhuravkin IN (1979) [Different effect of testosterone on polypotential stem hematopoietic stem cells and immunocompetent B-lymphocytes]. Zh Mikrobiol Epidemiol Immunobiol 9:72–76.

